
[This is a facsimilie of a 1977 Bell Labs memo on Mini-UNIX that came as part of our Mini-UNIX

distribution. I have another, similar, document entitled "Mini-UNIX Summary", which is not reproduced

here.]

Bell Laboratories

Subject: The MINI-UNIX System

Date: January 3, 1977

From: H. Lycklama

MEMORANDUM FOR FILE

1. Introduction

The MINI-UNIX Operating System was written to run on all PDP-11 processors without the memory

management unit available on the PDP-11/40, 11/45 and 11/70 processors and is therefore restricted to a

28K word address space. The operating system itself (MX) is basically a modified version of the Version

6 UNIX Operating System (1) and as such supports most of the standard UNIX system calls. The system

resides in 12K words of memory and is written in the C language. An instruction emulation package is

included in the system for those machines which do not support the extended instruction set (e.g. mul,

div, ash, etc.). The system supports up to four users using a simple round-robin time-slicing algorithm. It

supports all of the UNIX user programs unmodified. User programs which have been slightly modified

are discussed in a later section. MINI-UNIX thus provides an inexpensive software development system

in a UNIX time-sharing environment for those installations with a minimum amount of hardware which is

insufficient to support the full Version 6 UNIX Operating System.

Other software tools are also available for easing the transition from software written under the DEC

DOS Operating System. This includes a macro assembler and linker.

2. Hardware

The MINI-UNIX system runs on any PDP-11 processor with 28K words of memory. The PDP-11

computer is a 16-bit word mini-computer with a UNIBUS for interfacing DEC peripherals to the CPU.

The typical configuration consists of a PDP-11/10 CPU with 28K words of memory, a console terminal

and an RK05 moving-head disk controller with two removable disk cartridges for swapping and file

system storage. Each RK05 disk pack has 2.5 Megabytes (8-bit byte) of storage. However, the MX

system also supports the RF fixed-head disk (1 Megabyte) and the RP03 and RP04 moving-head disk

controllers with 40M bytes and 80M bytes, respectively. Other peripherals supported include line-printer,

Dectape, magtape and various asynchronous and synchronous interface units.

The system is normally configured to be 12K words in size. This includes an emulation package for

interpreting the 10 extended instructions normally performed by the EIS hardware available as an option

on some PDP-11 processors and standard on the PDP-11/45 processor. A minimum system has room for 6

or 7 system buffers. As new drivers are added to the system, the number of system buffers must be

decreased if the system size is maintained at 12K words. Thus it is recommended that for some

applications it may be appropriate to add the drivers for only a few peripherals on any one version of the

system and thus maintain a few versions of the system, one for each set of drivers desired concurrently in

the system. This keeps the system size at 12K words in order to be able to support all of the user software

of Version 6 UNIX.

3. System Features

Mini-UNIX Memo http://www.60bits.net/msu/mycomp/terak/termubel.htm

1 von 5 06.03.2018, 15:34

The Operating System itself is written in the high-level language, C (2) and as such bears a strong

resemblance to the standard UNIX Operating System which runs on the PDP-11/40, 11/45 and 11/70

computers. Because of the memory address space limitation due to the lack of a segmentation unit, the

system size is generally kept to 12K words in size. Thus its capabilities are somewhat less than those of

the standard UNIX system, especially in the area of interprocess communication and interactive

debugging. The number of processes (and users) which MINI-UNIX (MX) can comfortably support is in

general much less than for the standard UNIX system. No more than four users are recommended for

MX. Currently the number of processes allowed is thirteen. This is a 'sysgen' parameter. The address

space available to a user program is 16K words. This enables almost all user programs which run under

Version 6 UNIX to run unmodified under MX. The exceptions are noted in a later section. The

capabilities of MX fall somewhere in between those of standard Version 6 UNIX and those of the LSX

operating system (3). LSX is a single-user UNIX-compatible system for the LSl-11 microprocessor using

floppy disks as secondary storage.

MX supports all of the UNIX system calls of the Version 6 UNIX operating system with the exception of:

ptrace, pipe, prof, setgid and getgid. For the sake of completeness the status of implementation of the

system calls are summarized in an Appendix. Thus MX supports all UNIX user programs with the

exception of programs which use the above mentioned system calls. User programs are compiled and

relocated to start at address 060000 and may occupy up to 16K words of memory. Up to 13 processes

may exist at any one time, although only one process may be in core and running. This should be

sufficient to handle up to four simultaneous users. Since no memory relocation is available, the complete

user program image must be swapped out to bring in a new user program. Hence no sharing of text is

possible. No software memory management is required. Scheduling is done on a simple round- robin

basis with each process in the run state receiving a two second time slice.

The file system supported by MX is identical to that provided by the UNIX time-sharing system. The

structure of the super-block and of the file inodes is maintained. MX supports the identical file system

hierarchical structure and makes the same distinctions between ordinary files, directories and special files.

Removable file systems are supported as well. Hence 'mount' and 'umount' system requests are treated

identical to those in standard UNIX. Under MX, a file's size is limited to one megabyte. Large files are

supported, but huge files (two level indirect block) are not. Groups are not supported in MX. Thus a file

has only a given owner user ID and no group ID. Read, write and execute permission bits are available

for both owner and non-owner of a file. The set-user ID bit is also supported in MINI-UNIX.

No interactive debugging is possible in MX since the 'ptrace' system call is not implemented. One may

still use the C debugger 'cab' but cannot plant breakpoint traps in the running image of a child process. It

may only be used for post-mortem debugging on core images. The profiling of a process to determine

where it is spending its time is also not permitted. Pipes have not been implemented in the MX system for

two reasons. One is that it requires too much code in the system which is already butting its head against

the top. Two is that the overhead required in switching from the process writing the pipe to the process

reading the pipe involves a process swap. Filters, however are simulated at the command level as

discussed in the next section.

Some other features have been stripped out of the system in MX in the interest of minimizing system

address space. Upon reading a file block, "read-ahead" is not invoked. This contributes only slightly to a

loss in throughput. Physical l/O has also not been implemented. This precludes the ability to read large

contiguous pieces of disk directly into the user's address space without system side-buffering. The system

buffering scheme is much simpler than in standard UNIX but a maximum of only eight buffers may be

allocated in a minimum system configuration.

4. UNIX User Program Modifications

Mini-UNIX Memo http://www.60bits.net/msu/mycomp/terak/termubel.htm

2 von 5 06.03.2018, 15:34

Since the MX system uses no segmentation unit, all user programs must be compiled and relocated to

start at address 060000. Under MX, the C programs are relocated automatically using the 'ld' program

which has been modified as described below. For assembly-language source programs, the 'a.out' program

may be relocated either using the 'reloc' program or the 'ld' program. The various user programs which

have been modified from the standard Version 6 UNIX or new programs which are supported but not

mentioned in the UNIX Programmer's Manual (4) are described below.

4.1. ar

The archive program supported is a version which is updated from that described in the UNIX

Programmer's Manual. It is written in the C language and has some new keys added. However the

documentation still applies.

4.2. bc

The 'bc' command works as in the standard UNIX system but cannot be used interactively since pipes are

not implemented in the system. In generating the source for 'be' using the 'yacc' compiler-compiler, the

source must be edited slightly to make it simulate the use of pipes.

4.3. check

The check program is not described in the UNIX Programmer's Manual. However, it combines most of

the individual features of dcheck, icheck and ncheck as described in the manual. A nag of -I will do the

equivalent of ncheck with no flags. All other flags described for dcheck, icheck and ncheck apply.

4.4. Debugger

The debugger db has been slightly modified in order to ease debugging under the MINI-UNIX system.

The default relocation address of all programs is assumed to be 60000(8). If the flag '-a' is given when the

debugget is invoked, the relocation address is assumed to be zero. This is useful for debugging the

system.

The default address can be changed by editing 'dbl.s' and setting the variable 'uorg' equal to the new

relocation address. Then the source code should be re-assembled. If none of the changes are desired, the

variable mx in dbl.s should be set to 0 and the source code reassembled.

4.5. Kdmp

This program is used to extract a dump of the complete system (28K words) from the swap area on disk.

The core image produced in the file "kore" may then be debugged post-mortem. Consult system source

code for the actual disk tracks used. If a system crash occurs and the core image of the system is written

out to disk, the system should be booted up single-user. Immediately, one should execute "kdmp"

(preferably on an uncorrupted file system) before the swap area is over-written.

4.6. Ld

The ld program has been modified to relocate the program origin to 060000 automatically. This is to

facilitate the compilation of C programs under the MINI-UNIX system. Note that all assembly programs,

after being assembled, must be relocated to 060000 either by using the link editor ld or the relocation

program reloc. The relocation origin may be changed from 060000 by changing the value of the TOPSYS

parameter in ld.c to the appropriate value.

Using the '-a ' option flag with ld turns off the relocation of a program's origin. The program is then

assumed to start execution at location 0. This is useful for link editing the MINI-UNIX system itself or

Mini-UNIX Memo http://www.60bits.net/msu/mycomp/terak/termubel.htm

3 von 5 06.03.2018, 15:34

any other program which starts execution at location 0.

4.7. Mkpt

The mkpt program constructs a prototype file given a specification file for direct input to the mkfs

program. Run "man 8 mkpt" for details.

4.8. Ps

The process status command outputs basically the same information as that of the Version 6 UNIX ps

command. It has been modified to take into consideration the different process table layout and the

different swapping technique used in MINI-UNIX.

4.9. Reloc

This Program is used to relocate all relocatable symbols in a program. Thus "reloc a.out 60000" will

relocate all relocatable symbols in "a.out" and relocate the starting address of the program (absolute zero)

to 060000. It must be used with all assembler output programs if the linkeditor is not required.

4.10. Sh

Since the MINI-UNIX system does not support pipes, the shell has been modified to simulate pipes

through the use of disk files. When a command line which requires the use of a pipe is detected, a disk

file is created and opened for reading and writing. The file is immediately unlinked, so that the name is

available for another pipe right away. The file is called '._pf'. Hopefully this name will not conflict with

any user file names. Thus, the symbol '|' in a shell command line becomes equivalent to '> ._pf; < ._pf'.

The command:

% prog 1 | prog2

translates into:

% progl > ._pf; prog2 c ._pf

The process writing on the pipe writes everything into the file, and when it exits, the reader process is

swapped in. It reads what the writer has written on the pipe file. The only danger in this type of

implementation is due to the limitation of space on the file system being used. A very large amount of

information going through a pipe could fill up the disk. Except for this, the pseudo-pipe code is

transparent to the user.

The sync command has been added to the shell. Thus the system call is made directly from the shell and

no other process is spawned.

4.11. Typo

This program checks for the most likely spelling errors in a document. It has been modified somewhat to

enable it to fit in 16K words of memory.

4.12. Yacc

The source for the yacc compiler has been edited to change some table sizes to make it run in 16K words

of memory. Further editing of symbols at the beginning of yO.c may be required to make up a yacc

compiler with different table sizes for a particular application.

Mini-UNIX Memo http://www.60bits.net/msu/mycomp/terak/termubel.htm

4 von 5 06.03.2018, 15:34

5. Summary

Since MX uses no segmentation unit, no protection is provided for the user program. Thus new user

programs must be debugged carefully. In practice, the use of the C language limits the user's program's

use of the program counter and stack pointer thus limiting damage and usually causing a bus error before

anything drastic happens. The lack of a segmentation unit does have its advantages. It means the user can

directly access all I/O registers on the UNIBUS and does not have to write special dev1ce drivers

interfaced with the file system to control the special peripherals. Thus in cases where a real- time program

is to be run, one may disable the system clock to inhibit unwanted clock interrupts and also swapping of

processes. One may also catch clock interrupts during the running of user programs if the clock is to be

used for user program timing control. The clock should then be restored to system control upon exit from

the user program.

There is also another set of user programs available under MX which may be used to ease transition from

DOS, the DEC operating system, to UNIX for those installations now using the DEC DOS operating

system on a PDP-11 CPU. This package consists of a macro-assembler and a linker-loader for assembling

programs written under DOS for the DEC macro-assembler. The result is a UNIX 'a.out' file.

The normal configuration for MX includes a PDP-11/10 CPU with 28K words of memory and two RK05

disk cartridges for secondary. The PDP-11/10 processor is slower than the PDP-11/40 processor and does

not have the full instruction set of the PDP-11/40 processor, thus requiring the emulation of the missing

instructions. A typical C compilation requires about twice the total time of that required on the equivalent

PDP-11/40 configuration. However, response to the editor commands is not significantly longer than on a

more powerful CPU. The cost of a minimum configuration:

PDP-11/10 CPU

28K words memory

2 RK05 disk drives

KL11 interface to control console

DL11E interface to dial-up line

60 cycle clock

is of the order of $20,000 at today's prices (December 1976). This provides an inexpensive tool for

software development in a UNIX time-sharing environment for those configurations which have

insufficient hardware to support a full Version 6 UNIX system.

H. Lycklama

MH- l 352-HL [???]

Atts. References Appendix

Reproduced by Mark Riordan.

Mini-UNIX Memo http://www.60bits.net/msu/mycomp/terak/termubel.htm

5 von 5 06.03.2018, 15:34

